A Symbolic-Numeric Method for Solving Boundary Value Problems of Kirchhoff Rods
نویسندگان
چکیده
We study solution methods for boundary value problems associated with the static Kirchhoff rod equations. Using the well known Kirchhoff kinetic analogy between the equations describing the spinning top in a gravity field and spatial rods, the static Kirchhoff rod equations can be fully integrated. We first give an explicit form of a general solution of the static Kirchhoff equations in parametric form that is easy to use. Then by combining the explicit solution with a minimization scheme, we develop a unified method to match the parameters and integration constants needed by the explicit solutions and given boundary conditions. The method presented in the paper can be adapted to a variety of boundary conditions. We detail our method on two commonly used boundary conditions.
منابع مشابه
A Symbolic-Numeric Approach to Tube Modeling in CAD Systems
In this note we present a symbolic-numeric method to the problem of tube modeling in CAD systems. Our approach is based on the Kirchhoff kinetic analogy which allows us to find analytic solutions to the static Kirchhoff equations for rods under given boundary conditions.
متن کاملSPLINE COLLOCATION METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS
The spline collocation method is used to approximate solutions of boundary value problems. The convergence analysis is given and the method is shown to have second-order convergence. A numerical illustration is given to show the pertinent features of the technique.
متن کاملAugmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملSinc-Galerkin method for solving a class of nonlinear two-point boundary value problems
In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...
متن کاملTENSION TRIGONOMETRIC SPLINES INTERPOLATION METHOD FOR SOLVING A LINEAR BOUNDARY VALUE PROBLEM
By using the trigonometric uniform splines of order 3 with a real tension factor, a numericalmethod is developed for solving a linear second order boundary value problems (2VBP) withDirichlet, Neumann and Cauchy types boundary conditions. The moment at the knots isapproximated by central finite-difference method. The order of convergence of the methodand the theory is illustrated by solving tes...
متن کامل